SparkFun will be closed on Tuesday, November 5th to support our team in being able to go out and vote! Orders placed after 2 pm MT Monday, November 4th will ship on Wednesday, November 6th. Thanks for your patience and understanding.
The SparkFun moto:bit is a fully loaded "carrier" board for the micro:bit that, when combined with the micro:bit, provides you with a fully functional robotics platform. The moto:bit offers a simple, beginner-friendly robotics controller capable of operating a basic robotics chassis. Onboard each moto:bit are multiple I/O pins capable of hooking up servos, sensors and other circuits. At the flip of the switch you can get your micro:bit moving!
The moto:bit connects to the micro:bit via an edge connector at the top of the board, making setup easy. This creates a handy way to swap out micro:bits for programming, while still providing reliable connections to all of the different pins on the micro:bit. We have also included a basic barrel jack on the moto:bit that is capable of providing power to anything you connect to the carrier board.
The micro:bit is a pocket-sized computer that lets you get creative with digital technology. Between the micro:bit and our shield-like bit boards you can do almost anything while coding, customizing and controlling your micro:bit from almost anywhere! You can use your micro:bit for all sorts of unique creations, from robots to musical instruments and more. At half the size of a credit card, this versatile board has vast potential!
Note: The SparkFun moto:bit does NOT include a micro:bit board. The micro:bit will need to be purchased separately.
1 of 1 found this helpful:
The red blinking LED means that the moto:bit is alive and ready. It is not a problem status indicator LED.
This skill concerns mechanical and robotics knowledge. You may need to know how mechanical parts interact, how motors work, or how to use motor drivers and controllers.
Skill Level: Rookie - You will be required to know some basics about motors, basic motor drivers and how simple robotic motion can be accomplished.
See all skill levels
If a board needs code or communicates somehow, you're going to need to know how to program or interface with it. The programming skill is all about communication and code.
Skill Level: Rookie - You will need a better fundamental understand of what code is, and how it works. You will be using beginner-level software and development tools like Arduino. You will be dealing directly with code, but numerous examples and libraries are available. Sensors or shields will communicate with serial or TTL.
See all skill levels
If it requires power, you need to know how much, what all the pins do, and how to hook it up. You may need to reference datasheets, schematics, and know the ins and outs of electronics.
Skill Level: Rookie - You may be required to know a bit more about the component, such as orientation, or how to hook it up, in addition to power requirements. You will need to understand polarized components.
See all skill levels
We welcome your comments and suggestions below. However, if you are looking for solutions to technical questions please see our Technical Assistance page.
Based on 3 ratings:
1 of 1 found this helpful:
This motor driver plus additional sensor/servo breakout is a welcomed addition to my Micro:Bit projects. Some things I really like about the board is the power switch and barrel jack (perfect for 9v, AAA, AA battery packs; max 17v).
I would like to see the spring loaded pin connectors for the motors, that would allow for various size wiring and provide a tight hold onto the wires, but this is still a very solid product. I will recommend to others.
This makes using motors and sensors in unison easier than most other breakout boards. I would like to have a 90 degree version (with the microbit mounted vertically to the horizontal moto:bit board) to make it easier to place on smaller robots. Other than that it works great!
This takes a LOT of the hookup trouble out of the equation in making a functioning robot ready for prime time! Love it and have gotten several kids hooked on making things that move!
I see there is an input voltage range of 3-17v. Does the input voltage carry through to the voltage supplied to the motors? Right now all I have is 4 x aa battery holder and I was wondering if I purchase something like 3c lipo at ~11v would that extra voltage get regulated down or would it carry through to the motors and allow them to spin faster. I looked thought he docs and did not see anything about the output voltage so I apologize if I missed it. Thanks!
Here is a handy class for people who want to program the moto:bit in micropython:
And here is a short implementation example: